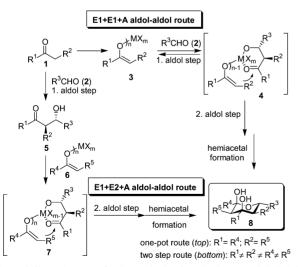
The elusive aldol reaction of enolates with aldolates—a highly stereoselective process using three different carbonyl components[†]

Michael Schmittel,*a Andreas Haeuseler,a Tom Nilgesb and Arno Pfitznerb

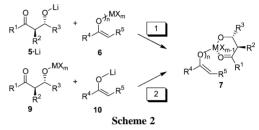
^a FB 8 – OC1 (Chemie-Biologie), Universität Siegen, Adolf-Reichwein-Str, D-57068 Siegen, Germany.
 E-mail: schmittel@chemie.uni-siegen.de; Fax: (+49) 271 740 3270; Tel: (+49) 271 740 4356
 ^b Institut für Anorganische Chemie, Universität Regensburg, Universitätsstr. 31, D-93040 Regensburg,

Germany


Received (in Cambridge, UK) 1st October 2002, Accepted 6th November 2002 First published as an Advance Article on the web 12th December 2002

Three different carbonyl components are assembled to tetrahydropyran-2,4-diols by two successive diastereose-lective aldol reactions.

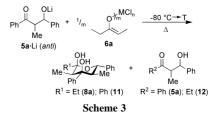
Contrary to the ample usage of the aldol reaction in domino/ tandem¹ processes.^{2,3} its use in two consecutive aldol–aldol reactions is rare⁴ and often limited to trimerisation protocols.⁵ We have recently outlined the first examples of a highly diastereoselective and widely applicable one-pot domino– aldol–aldol–hemiacetal strategy using metal bisenolates (or polyenolates) **3** and various aldehydes **2** (Scheme 1, top route, $R^1 = R^4$; $R^2 = R^5$)⁶ yielding tetrahydropyran-2,4-diols **8** along the **E1** + **E1** + **A** route (using only one enol **E1** and one aldehyde **A**). We now wish to report the first case of an **E1** + **E2** + **A** aldol–aldol protocol to yield structurally diversified tetrahydropyran-2,4-diols with up to 5 different groups R in a highly stereoselective manner.


As 4 is a plausible intermediate (the metal center coordinates both to the aldolate[‡] and enolate) in the E1 + E1 + A reaction,⁶ we contemplated realising the elusive E1 + E2 + A aldol-aldol reaction *via* its structural analogue 7. In such an approach, however, one has to worry that rapid retro-aldol reaction, as observed in the E1 + E1 + A route ($4 \rightarrow 3 + 2$), leads to a disastrous scrambling of the enol components, most likely the reason why any E1 + E2 + A reaction has been intangible so far.

Realistically, the E1 + E2 + A aldol-aldol reaction can only be orchestrated when (i) an adequate way to assemble the desired intermediate 7 is found, and (ii) a metal is met that

Scheme 1 General concept for the synthesis of tetrahydropyran-2,4-diols by two successive aldol reaction steps (E1 and E2 denote the nucleophilic enolates, A the aldehyde component).

† Electronic supplementary information (ESI) available: synthesis and spectroscopic data for 8a. Crystallography for 8a. Fig. S1: crystal structure of 8a; Fig. S2: hydrogen bonding in 8a. See http://www.rsc.org/suppdata/ cc/b2/b209536j/ renders the 2. aldol step (Scheme 1) more rapid than retro-aldol reaction. **7** may originate from the reaction of mono-aldolate **5**·Li with metal enolate **6**. (pathway 1, Scheme 2; X = leaving group) or alternatively from lithium enolate **10** and metal aldolate **9** (pathway 2). Independent of the pathway the aldolate must have the correct relative *anti* configuration as in the tetrahydropyran-2,4-diol.



Following our earlier results,⁶ the influence of various metal fragments ($MX_{m+n} = TiCl_4, TiCl_4-Bu_3N, Ti(OiPr)_2Cl_2, ZrCl_4, SnCl_4, InCl_3, AlCl_3, and ZnCl_2)$ in the reaction of metal enolate **6a** ($R^4 = Et, R^5 = Me$) with *anti* **5a**·Li⁷ ($R^1 = Ph, R^2 = Me, R^3 = Ph$; d.e. = 75%) to afford **8a** as the **E1** + **E2** + **A** product was explored (Scheme 3). From the metal fragments, only ZrCl_4 (19%), SnCl_4 (28%), InCl_3 (7%) and ZnCl_2 (14%) afforded **8a** in some detectable yield.

Most importantly, however, no retro-aldol cleavage of **5a** was observed with SnCl₄, whereas use of ZrCl₄, InCl₃, and ZnCl₂ led additionally to tetrahydropyran-2,4-diol **11**, propiophenone and β -hydroxyketone **12**, in particular at higher temperatures. The formation of the latter compounds unequivocally indicates occurrence of the unwanted retro-aldol reaction. Thus, the reaction was optimized with SnCl₄ varying the temperature, reaction time and stoichiometry. Finally, **8a** was furnished in 63% at 40 °C, 4 h using SnCl₄:enolate:monoaldolate = 1:2:2 attesting that two molecules of **8a** form in the coordination sphere of one tin(rv) center. Further decrease of the SnCl₄:enolate ratio to 1:5 failed to provide **8a**, which precludes a catalytic route. Notably, all efforts to achieve the **E1** + **E2** + **A** reaction *via* pathway 2 (Scheme 2) proved far less successful.

The **E1** + **E2** + **A** product **8a** *via* ¹H-NMR and X-ray structure analysis (Fig. 1) shows all alkyl and aryl substituents in the equatorial positions and both hydroxy groups axially. Typically, as already known from **E1** + **E1** + **A** products, the two methyl groups in **8a** appear at high field ($\delta = 0.36$ and 0.77 ppm).

With a successful approach to 8a at hand, we now studied the reaction of 6a with aldolates 5a,b (for R^1, R^2 and R^3 , see Table 1) changing the *syn*:*anti* ratio of the latter. Indeed, as predicted

10.1039/b209536

ЫÖ

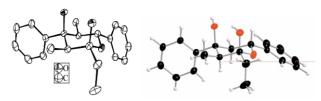


Fig. 1 X-ray structure of 8a.[‡]§ Enantiomorphous crystals of 8a were received from EtOH (conglomerate). The ellipsoids (left) represent a probability factor of 50%; stick and ball representation (right).

above, rather low yields of **8a**, **b**, were received starting from *syn* enriched monoaldolates **5a,b** while yields amounted to >50% with *anti*-aldolates as starting material (Table 2). Formation of **8b** from *syn*-**5b** (entry d) is explained by partial *syn* \rightarrow *anti* isomerisation of the β -hydroxyketone *via* a retro-aldol process, especially at elevated temperatures.⁷

The general applicability of the concept was further explored by varying the enolates and aldehydes. Rewardingly, Table 1 documents that 10 out 12 desired E1 + E2 + A products could be prepared in a highly stereoselective manner. In no case were other diastereomeric tetrahydropyrandiols detected.

Some problems arise with β -hydroxyketones containing the acetophenone subunit as they easily dehydrate under the reacton conditions to afford α , β -unsaturated ketones. Dehydration could be minimized for entries 9 and 10 by reducing the reaction temperature to 0 °C. However, no formation of **81,m** was detected even at low temperatures (Table 1, entries 11 and 12).

A mechanistic rationale (Scheme 4) for these results has to acknowledge the *anti* configuration of the starting aldolate. Thus, to minimize steric interactions in the transition state for the 2. aldol step (**TS1**) a chair-twistboat conformation allows the bulky groups to assume a pseudo equatorial position. Similarly, **14** should be most stable in chair-boat conformation. Formation of the final hemiacetal *via* **TS2** should therefore be accompanied by a release of strain as all R^1-R^5 substituents move into equatorial positions.

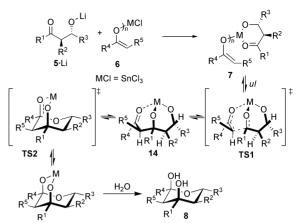

In summary, a novel methodology is described for the highly stereoselective synthesis of tetrahydropyran-2,4-diols starting from simple carbonyl compounds in two sequential aldol reactions. The utility of the concept has been demonstrated preparing a variety of products from different alkyl and aryl ketones and aldehydes. Current investigations in our laborato-

Table 1 Preparation of tetrahydropyran-2,4-diols 8 from 5 and 6 ($-80 \degree C \rightarrow 40 \degree C, 4 h$) in the presence of SnCl₄

Entry	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	R ⁵	Product	Yield ^a (%)
1	Ph	Me	Ph	Et	Me	8a	63
2	Ph	Me	iPr	Et	Me	8b	56
3	Ph	Me	Ph	Ph	Н	8c	53
4	Ph	Me	iPr	Ph	Н	8d	45
5	Et	Me	Ph	Ph	Me	8e	43
6	Et	Me	iPr	Ph	Me	8f	56
7	Et	Me	Ph	Ph	Н	8g	41
8	Et	Me	iPr	Ph	Н	8 h	48
9	Ph	Н	Ph	Et	Me	8i	48^{b}
10	Ph	Н	iPr	Et	Me	8k	22^{b}
11	Ph	Н	Ph	Ph	Me	81	_
12	Ph	Н	iPr	Ph	Me	8m	_
^a Isolat	ed vield	ls. ^b Reac	tion tem	perature	$= 0 \circ C$		

Table 2 Dependence of the yields of 8 on the diastereomeric ratio of the starting aldolate 5 ($-80 \text{ }^\circ\text{C} \rightarrow 40 \text{ }^\circ\text{C}$, 4 h) in the presence of $6a\text{-SnCl}_4$

Entry Aldolate syn: anti Yield (%)	
a 5a ⁷ 15:85 8a /63	
b 5a ⁸ 95:5 8a /7	
c $5b^7$ <1:>99 $8b/54$	
d $5b^8 > 99: <1$ $8b/9$	

Scheme 4 Mechanistic proposal for the formation of 8.

ries aim to use the diversified tetrahydropyran-2,4-diol structures as bisdentate ligands in metal catalysed reactions.

This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.

Notes and references

 \ddagger We use the expression aldolate also for a ketolate (= $\beta\text{-hydroxy-ketone}).$

§ Crystal data for **8a**: orthorhombic, space group $Pna2_1$ (No. 33), a = 10.9177(9), b = 17.2334(10), c = 9.4999(5) Å, V = 1787.4(2) Å³, Z = 4, $\rho_{calc} = 1.213$ g cm⁻¹, data collection: STOE IPDS, 27347 reflections, 4247 independent reflections, $R_{int} = 0.0409$, T = 173 K, Mo-K α radiation ($\lambda = 0.71069$ Å), $2\theta_{max} = 56.22^{\circ}$, $-14 \le h \le 14$, $-22 \le k \le 22$, $-12 \le l \le 12$, crystal size $0.45 \times 0.4 \times 0.3$ mm, no absorption correction, structure solution by direct methods, refinement against F^2 (SHELX-97⁹). The refinement of 322 parameters converged at R = 0.0292 and wR = 0.0732 ($I > 2\sigma(I)$) and R = 0.0324 and wR = 0.0746 (all reflections). Flack¹⁰ parameter 0.8(6). The absolute configuration could not be determined from X-ray. CCDC 163263. See http://www.rsc.org/suppdata/cc/b2/b209536j/ for crystallographic data in CIF or other electronic format.

- 1 L. F. Tietze, Chem. Rev., 1996, 96, 115.
- 2 Aldol reaction as first step in a domino process: (a) P. Galatsis, S. D. Millan, P. Nechala and G. Ferguson, J. Org. Chem., 1994, **59**, 6643; (b) P. M. Bodnar, J. T. Shaw and K. A. Woerpel, J. Org. Chem., 1997, **62**, 5674; (c) H. W. Yang, C. X. Zhao and D. Romo, *Tetrahedron*, 1997, **53**, 16471; (d) G. W. Kabalka, D. Tejedor, N.-S. Li, R. R. Malladi and S. Trotman, J. Org. Chem., 1998, **63**, 6438; (e) L. Lu, H.-Y. Chang and J. -M. Fang, J. Org. Chem., 1999, **64**, 843; (f) C. Delas, O. Blacque and C. Moise, J. Chem. Soc., Perkin Trans. 1, 2000, 2265; (g) C. Schneider and M. Hansch, Chem. Commun., 2001, 1218.
- 3 Aldol reaction as second step in a domino process: (a) T. Arai, H. Sasai, K. Aoe, K. Okamura, T. Date and M. Shibasaki, Angew. Chem., Int. Ed. Engl., 1996, **35**, 104; (b) B. L. Feringa, M. Pineschi, L. A. Arnold, R. Imbos and A. H. M. De Vries, Angew. Chem., Int. Ed. Engl., 1997, **36**, 2620; (c) M. Ono, K. Nishimura, Y. Nagaoka and K. Tomioka, Tetrahedron Lett., 1999, **40**, 1509; (d) X. Huang and M. H. Xie, Org. Lett., 2002, **4**, 1331; (e) P. Langer, N. N. R. Saleh and I. Freifeld, Chem. Commun., 2002, 168–169.
- 4 F. Barba and J. L. de la Fuente, J. Org. Chem., 1996, 61, 8662.
- (a) A. L. Henne and P. E. Hinkamp, J. Am. Chem. Soc., 1954, **76**, 5147;
 (b) R. A. Moore and R. Levine, J. Org. Chem., 1964, **29**, 1439;
 (c) F. G. Drakesmith, O. J. Stewart and P. Tarrant, J. Org. Chem., 1967, **33**, 280;
 (d) P. Rollin, Bull. Soc. Chem. Fr., 1973, 1509;
 (e) M. M. Dhingra and K. R. Tatta, Org. Magn. Reson., 1977, **9**, 23;
 (f) S.-S. Yun, I.-H. Suh, S.-S. Choi and S. Lee, Chem. Lett., 1998, 985.
- 6 (a) M. Schmittel, M. K. Ghorai, A. Haeuseler, W. Henn, T. Koy and R. Söllner, *Eur. J. Org. Chem.*, 1999, 2007; (b) M. Schmittel and M. K. Ghorai, *Synlett*, 2001, 1992.
- 7 C. H. Heathcock, C. T. Buse, W. A. Kleschick, M. C. Pirrung, J. E. Sohn and J. Lampe, *J. Org. Chem.*, 1980, **45**, 1066.
- 8 (a) Y. Yoshida, R. Hayashi, H. Sumihara and Y. Tanabe, *Tetrahedron Lett.*, 1997, **38**, 8727; (b) Y. Yoshida, N. Matsumoto, R. Hamasaki and Y. Tanabe, *Tetrahedron Lett.*, 1999, **40**, 4227.
- G. M. Sheldrick, SHELX 97 Programs for the solution and refinement of crystal structures, University of Göttingen, Germany, 1997.
- 10 H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876.